

Specification for Approval

Customer:	

Model Name:

Sı	upplier Approv	al	Customer approval
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Revision Record

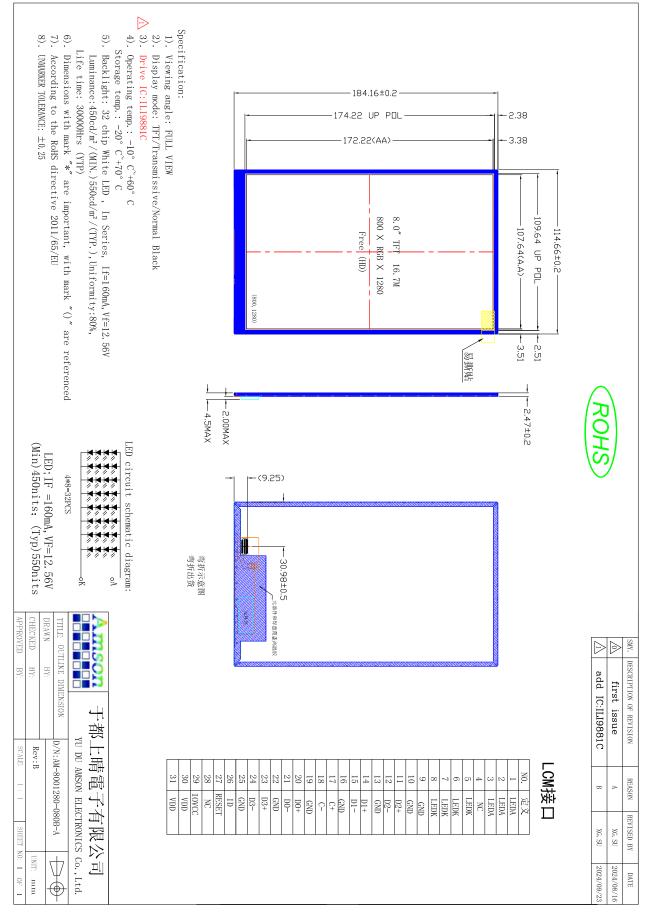
REV NO.	REV DATE	CONTENTS	Note
A	2024-08-16	NEW ISSUE	
В	2024-09-23	MODIFY ITEM 3 & ITEM 8	P.5 & P.13

Table of Contents

List	Description	Page No.
	Cover	1
	Revision Record	2
	Table of Contents	3
1	Scope	4
2	General Information	4
3	External Dimensions	5
4	Interface Description	6
5	Absolute Maximum Ratings	7
6	DC Characteristics	7
7	Timing Characteristics	8
8	Backlight Characteristics	13
9	Optical Characteristics	14
10	Reliability Test Conditions and Methods	16
11	Inspection Standard	17
12	Handling Precautions	23
13	Precaution for Use	24
14	Packing Method	24

1. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.


If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution.

2. General Information

ITEM	STANDARD VALUES	UNITS
LCD type	8.0"TFT	
Dot arrangement	800×3(RGB)×1280	dots
Color filter array	RGB vertical stripe	
Display mode	IPS/Normally Black	
Viewing Direction	85/85/85	
Module size	114.66(W) × 184.16(H) × 2.47(T)	mm
Active area	107.64× 172.22	mm
Interface	2&4 Lanes MIPI Interface	
Backlight	White LED x 36	
Operating temperature	-10 ~ +60	°C
Storage temperature	-20 ~ +70	°C

3. External Dimensions

YU DU AMSON ELECTRONICS CO., LTD.

4. Interface Description

PIN	PIN NAME	DESCRIPTION	Remark
1,2,3	LEDA	Anode for light bar	
4	NC	NC	
5,6,7,8	LEDK	Cathode for light bar	
9	GND	Ground	
10	GND	Ground	
11	MIPI_D2+	MIPI differential data2 input(Positive)	
12	MIPI_D2-	MIPI differential data2 input(Negative)	
13	GND	Ground	
14	MIPI_D1+	MIPI differential data1 input(Positive)	
15	MIPI_D1-	MIPI differential data1 input(Negative)	
16	GND	Ground	
17	MIPI_CLK+	MIPI differential clock input(Positive)	
18	MIPI_CLK-	MIPI differential clock input(Negative)	
19	GND	Ground	
20	MIPI_D0+	MIPI differential data0 input(Positive)	
21	MIPI_D0-	MIPI differential data0 input(Negative)	
22	GND	Ground	
23	MIPI_D3+	MIPI differential data3 input(Positive)	
24	MIPI_D3-	MIPI differential data3 input(Negative)	
25	GND	Ground	
26	ID	NC	
27	RESET	Device reset signal	
28	GND	Ground	
29	VDDIO	1.8V/3.3V input	
30	VDD	3.3V input	
31	VDD	3.3V input	

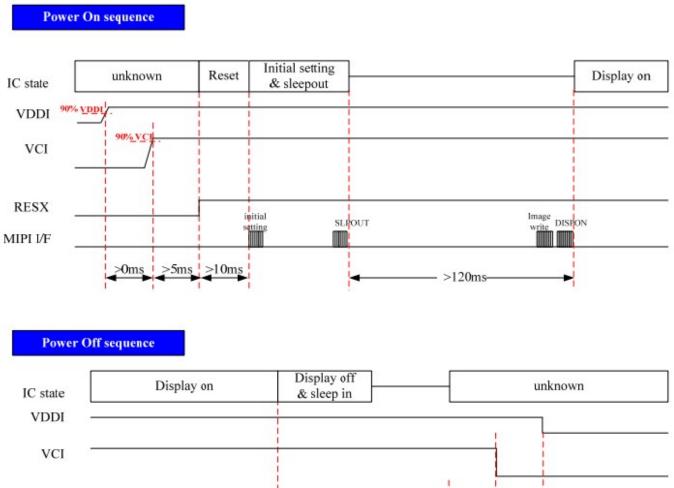
5. Absolute Maximum Ratings

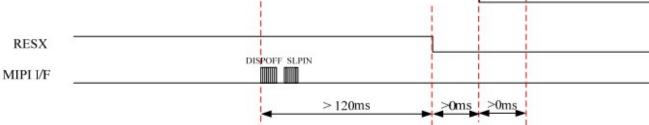
U					
Item	Symbol	Min.	Max.	Unit	Remark
Digital Supply Voltage	VDD	-0.3	4.0	V	
Operating Temperature	Тор	-10	60	°C	
Storage Temperature	Тѕт	-20	70	°C	

6. DC Characteristics

ltem	Symbol	Min.	Тур.	Max.	Unit	Remark
Digital Supply Voltage	VDD	3.0	3.3	3.6	V	
I/O Supply Voltage	VDDIO	1.7	1.8	3.6	V	
Input logic high voltage	Vін	0.7*VDD/ VDDIO	-	VDD/ VDDIO	V	
Input logic low voltage	VIL	GND	-	0.3*VDD/ VDDIO	V	

Version: B

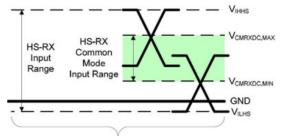

2024-09-23


7. Timing Characteristics

7.1. Power ON/OFF Sequence

2-Power mode with Power IC or PFM mode

The power on/off sequence for 2-power mode, in which input powers are VCI and VDDI, is depicted in the following. Please follow the power input sequence to avoid triggering any abnormal state.

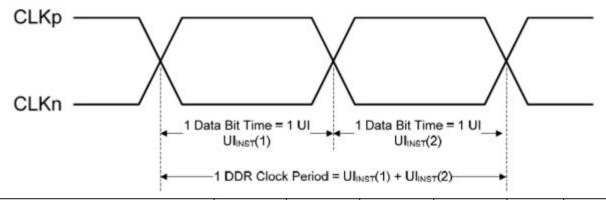


2024-09-23

7.2 MIPI Characteristics

7.2.1 DC Specifications High-Speed Receiver Specification

High	Speed	Receiver
------	-------	----------


Parameter	Description	Min	Nom	Max	Units	Note
VCMRX(DC)	Common-mode voltage for HS receiver	70		330	mV	1,2
VIDTH	Differential input high threshold			70	mV	
VIDTL	Differential input low threshold	-70			mV	8
VIHHS	Single-ended input high voltage			460	mV	1
VILHS	Single-ended input low voltage	-40			mV	1
ZID	Differential input impedance	80	100	125	Ω	

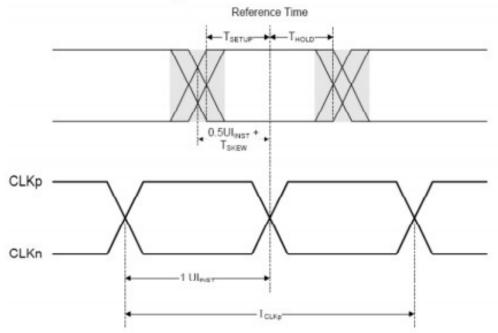
Notes:

- 1. Excluding possible additional RF interference of 100mV peak sine wave beyond 450MHz.
- 2. Values in this table include a ground difference of 50mV between the transmitter and the
- receiver, the static common-mode level tolerance and variations below 450MHz

7.2.2 Forward high speed transmissions

DDR Clock Definition

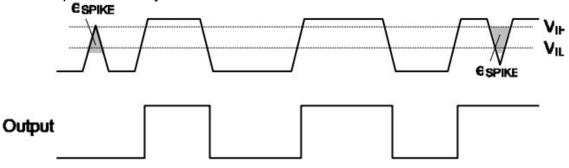
Clock Parameter	Symbol	Min	Тур	Max	Units	Notes
UI instantaneous				12.5	ns	1,2


Notes:

- 1. This value corresponds to a minimum 80 Mbps data rate.
- 2. The minimum UI shall not be violated for any single bit period, i.e., any DDR half cycle within a data burst.

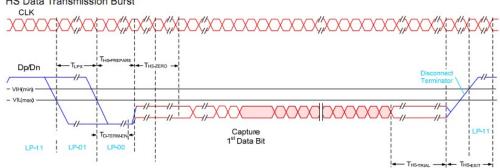
2024-09-23

Data to Clock Timing Definitions

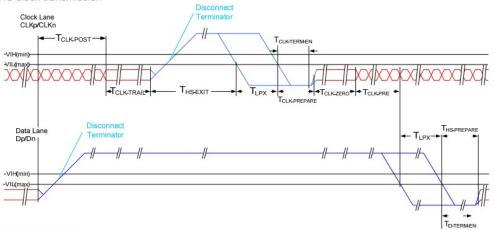

7.2.3 Low power transceiver specifications

Parameters	Symbol	Condition	Min	Тур	Max	Unit
Logic high level input voltage	VIHCD	Contention Detection (Lane_D0)	450		1350	mV
Logic low level input voltage	VILCD	Contention Detection (Lane_D0)	0	22.12	200	mV
Logic high level input voltage	VIH-LPRX	LP-Rx (Lane_CK, Lane_D0, Lane_D1)	880	- 1	1350	mV
Logic low level input voltage	VIL-LPRX	LP-Rx (Lane_CK, Lane_D0, Lane_D1	0	20.05	550	mV
Logic low level input voltage	VIL-ULPS	LP-Rx ULPS (Lane_CK, Lane_D0, Lane_D1)	0	20.05	300	mV
Logic high level input voltage	VOH-LPTX	Contention Detection (Lane_D0)	1.1	1.2	1.3	V
Logic low level input voltage	VOL-LPTX	Contention Detection (Lane_D0)	-50	0	50	mV
eSPIKE ^(1.2.3)	Fig. 2	Input pulse rejection			300	V.ps

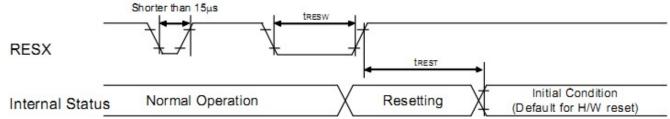
Notes:


(1) Time-voltage integration of a spike above VIL when being in LP-0 state or below VIH when being in LP-1 state an impulse less than this will not change the receiver state.

(2) In addition to the required glitch rejection, implementers shall ensure rejection of known RF-interferers. Input Glitch Rejection of Low Power Receivers as follow.



7.3 DSI Timing Characteristics

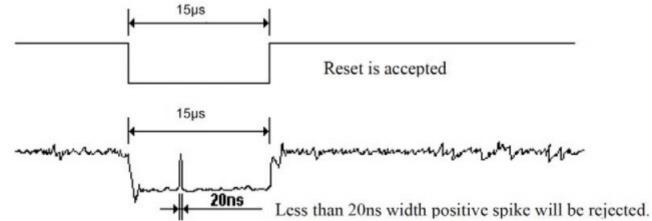


Timing Paran Parameter	Description	Min	Typ	Max	Unit
T _{CLK-POST}	Time that the transmitter continues to send HS clock after the last associated Data Lane has transitioned to LP Mode. Interval is defined as the period from the end of $T_{HS-TRAIL}$ to the beginning of $T_{CLK-TRAIL}$.	60ns + 52*UI			ns
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0 state after the last payload clock bit of a HS transmission burst.	60			ns
T _{HS-EXIT}	Time that the transmitter drives LP-11 following a HS burst.	300			ns
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS line termination, starting from the time point when Dn crosses $V_{IL,MAX}$.	Time for Dn to reach $V_{\text{TERM-EN}}$		38	ns
T _{CLK-PREPARE}	Time that the transmitter drives the Clock Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission.	38		95	ns
T _{CLK-PRE}	Time that the HS clock shall be driven by the transmitter prior to any associated Data Lane beginning the transition from LP to HS mode.	8			UI
T _{CLK-PREPARE} + T _{CLK-ZERO}	$T_{CLK-PREPARE}$ + time that the transmitter drives the HS-0 state prior to starting the Clock.	300			ns
T _{D-TERM-EN}	Time for the Data Lane receiver to enable the HS line termination, starting from the time point when Dn crosses $V_{IL,MAX}$.	Time for Dn to reach V _{TERM-EN}		35 ns +4*UI	
T _{hs-prepare}	Time that the transmitter drives the Data Lane LP-00 Line state immediately before the HS-0 Line state starting the HS transmission	40ns + 4*Ul		85 ns + 6*Ul	ns
T _{HS-PREPARE} + T _{HS-ZERO}	T _{HS-PREPARE} + time that the transmitter drives the HS-0 state prior to transmitting the Sync sequence.	145ns + 10*UI			ns
T _{HS-TRAIL}	Time that the transmitter drives the flipped differential state after last payload data bit of a HS transmission burst	60ns + 4*UI			ns

YU DU AMSON ELECTRONICS CO., LTD.

7.4 Reset Timing Characteristics

Reset timing:


IOVCC=1.65V to 3.6V, AGND=DGND=0V, Ta=-40 to 85°C

Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit		
t _{RESW}	*1) Reset low pulse width	RESX	15	-	-		μs		
t _{REST} *2) Reset complete time		-	-	-	5	When reset applied during sleep-in mode	ms		
IREST	t _{REST} *2) Reset complete time			-	120	When reset applied during sleep-out mode	ms		
RESX PL	llse	Action							
Shorter th	han 5μs	Reset Rejected							
Longer than 15µs		IC Reset							
Between 5μs and 15μs		Reset starts (It depends on voltage and temperature condition.)							

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H/W reset. Note 3. During Reset Complete Time, data in MTP will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.

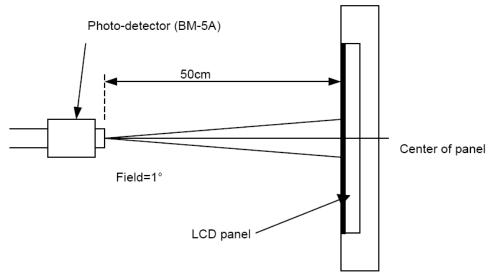
Note 4. Spike Rejection also applies during a valid reset pulse as shown below:

Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

YU DU AMSON ELECTRONICS CO., LTD.

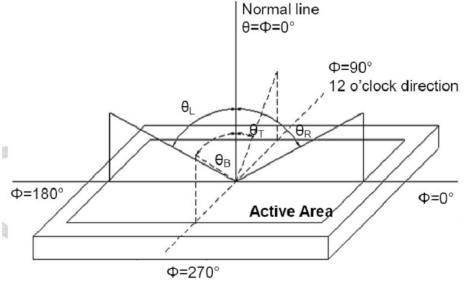
8. Backlight Characteristics

Item	Symbol	MIN	ТҮР	MAX	UNIT	Test Condition
	- ,					
Supply Voltage	Vf	11.3	12.56	14.0	V	lf=160mA
Supply Current	lf	-	160	-	mA	-
Luminous Intensity for LCM	-	450	550	-	cd/m ²	lf=160mA
Uniformity for LCM	-	-	80	-	%	lf=160mA
Life Time	-	-	50000	-	Hr	lf=160mA
Backlight Color		White				

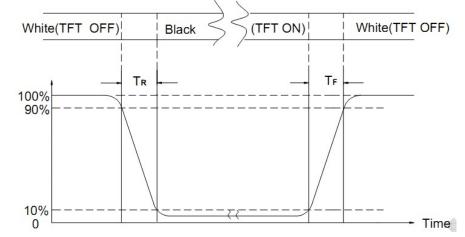


2024-09-23

9. Optical Characteristics


ltem	Condition	s	Min.	Тур.	Max.	Unit	Note
		θι	-	85	-		
Viewing Angle (CR>10)	Horizontal	θr	-	85	-		
	Vertical	θт	-	85	-	degree	(1),(2),(6)
	Vertical	θв	-	85	-		
Contrast Ratio	Center		600	800	-	-	(1),(3),(6)
Posponso Timo	Rising			30	35	ms	(1) (4) (6)
Response Time	Falling		-		- 55		(1),(4),(6)
	Red x			-		-	
	Red y			-		-	
	Green x			-		-	
CF Color	Green y			-		-	(1) (6)
Chromaticity (CIE1931)	Blue x		Тур. -0.05	-	Тур. +0.05	-	(1), (6)
	Blue y		-0.05	-	10.00	-	
	White x		1	0.319		-	
	White y			0.329		-]

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.


Note (2) Definition of Viewing Angle

Note (3) Definition Of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0 Note (4) Definition of response time

Note (5) Definition of Transmittance (Module is without signal input) Transmittance = Center Luminance of LCD / Center Luminance of Back Light x 100%

Note (6) Definition of color chromaticity (CIE1931)

Color coordinates measured at the center point of LCD

2024-09-23

10. Reliability Test Conditions and Methods

NO.	TEST ITEMS	TEST CONDITION	INSPECTION AFTER TEST
1)	High Temperature Storage	70°C±2°C× <mark>96</mark> Hours	
2	Low Temperature Storage	-20°C±2°C× <mark>96</mark> Hours	
3	High Temperature Operating	60°C±2°C× <mark>96</mark> Hours	Inspection after 2~4hours storage at room
(4)	Low Temperature Operating	-10°C±2°C× <mark>96</mark> Hours	temperature, the samples should be free from
5	Temperature Cycle(Storage)	-10°C ⇐⇒ 50°C (30mi <u>n) (5min) (</u> 30min) 1cycle Total 48cycle	defects: 1, Air bubble in the LCD. 2, Seal leak. 3, Non-display.
6	Damp Proof Test (Storage)	<mark>60</mark> °C±5°C×90%RH× <mark>96</mark> Hours	4, Missing segments. 5, Glass crack. 6, Current IDD is twice
7	Vibration Test	Frequency:10Hz~55Hz~10Hz Amplitude:1.5MM X,Y,Z direction for total 3hours (packing condition test will be tested by a carton)	higher than initial value. 7, The surface shall be free from damage. 8, The electric characteristic requirements
8	Drooping Test	Drop to the ground from 1M height one time every side of carton. (packing condition test will be tested by a carton)	shall be satisfied. 9.Auxiliary materials are not included in the scope
9	ESD Test	Air Discharge: $\pm 8 \text{ kv} 5 \text{ times each}$ test location: LCD surface around the distance of 5 mm contact discharge: $\pm 4 \text{ kv} 5$ times each test location: Product Four Corners, center point 150pF, 330 Ω	of testing

Reference Range of experimental project: 1234567 : MIL-STD-202E

⑧: MIL-STD-810E⑨: IEC-61000-4-2

REMARK:

1, The Test samples should be applied to only one test item.

2, Sample side for each test item is 3~10pcs.

3,For Damp Proof Test, Pure water(Resistance>10M Ω)should be used.

4, In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5, EL evaluation should be accepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6, Failure Judgment Criterion: Basic Specification Electrical Characteristic, Mechanical Characteristic, Optical Characteristic

2024-09-23

11. Inspection Standard

11.1. QUALITY :

THE QUALITY OF GOODS SUPPLIED TO PURCHASER SHALL COME UP TO THE FOLLOWING STANDARD.

11.1.1. INSPECTIONTOOLS AND INSTRUMENTS

Vernier calipers, film scales, multimeter, magnifying eyepiece, ND5%, luminance meter and so on.

11.1.2. THE METHOD OF PRESERVING GOODS

AFTER DELIVERY OF GOODS FROM AMSON TO PURCHASER. PURCHASER SHALL CONTROL THE LCM AT -10 TO 40 ,AND IT MIGHT BE DESIRABLE TO KEEP AT THE NORMAL ROOM TEMPERATURE AND HUMIDITY UNTIL INCOMING INSPECTION OR THROWING INTO PROCESS LINE.

11.1.3. INCOMING INSPECTION

(A) THE METHOD OF INSPECTION

IF PURCHASER MAKE AN INCOMING INSPECTION , A SAMPLING PLAN SHALL BE APPLIED ON THE CONDITION THAT QUALITY OF ONE DELIVERY SHALL BE REGARDED AS ONE LOT.

(B) THE STANDARD OF QUALITY

ISO-2859-1 (SAME AS MIL-STD-105E) ,LEVEL: II

(, ,
CLASS	AQL(%)
CRITICAL	0.4 %
MAJOR	0.65 %
MINOR	1.5 %

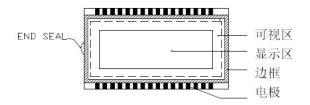
EVERY ITEM SHALL BE INSPECTED ACCORDING TO THE CLASS. (C) MEASURE

IF AS THE RESULT OF ABOVE RECEIVING INSPECTION , A LOT OUT IS DISCOVERED. PURCHASER SHALL BE INFORM SELLER OF IT WITHIN SEVEN DAYS. BUT FIRST SHIPMENT WITHIN FOURTEEN DAYS.

11.1.4. WARRANTY POLICY

AMSON WILL PROVIDE ONE-YEAR WARRANTY FOR THE PRODUCTS ONLY IF UNDER SPECIFICATION OPERATING CONDITIONS. AMSON WILL REPLACE NEW PRODUCTS FOR THESE DEFECT PRODUCTS WHICH UNDER WARRANTY PERIOD AND BELONG TO THE RESPONSIBILITY OF AMSON.

11.2. CHECKING CONDITION


- **11.2.1.**CHECKING DIRECTION SHALL BE IN THE 45 DEGREE AREA TO FACE THE SAMPLE.
- **11.2.2.** CHECKER SHALL SEE OVER 300±25 mm. WITH BARE EYES FAR FROM SAMPLE
- **11.2.3.**Ambient Illumination:

0 ~30 Lux for functional inspection

500 ~ 1200 Lux for external appearance inspection.

11.2.4. TEST AREA:

11.2.5. Inspection should be carried out with rope electrostatic ring and static finger cover (both hands except small fingers must be worn)

AM-8001280-080B-A

Version: B

2024-09-23

11.2.6. The inspector may make a visual inspection or a comparative examination with a film ruler and a magnifying eyepiece. Individual defects shall be determined according to the limited samples.

11.2.7. Functional testing uses electrical testing fixtures or test fixtures required by customers.

11.2.8. the ion fan should be used when testing.

11.2.9. the principle of judgment

11.3.1 If the defect outside the visual area does not affect the assembly and display, it will be judged as a good product.

11.3.2 Poor definitionPixel:A combination of three sub-pixels(Red + Green + Blue).

Dot:

Any of the sub-pixels (Red or Green or Blue).

Bright and dark dots:

A point pixel (sub-pixel: R, G, B pixels) is lit or turned off during the display function test. **Highlights**:

Usually considered to be shown on a black screen.

Dark spots:

They are generally considered to be shown on R, G, B solid colors or white images. **Neighborhood**:

Two or three adjacent point pixels (dot: sub-pixel) connected together (R, G or G, B or B, R or RGB).

11.3 Inspection Plans:

11.3. INSPECTION PLAN :

CLASS	ITEM	JUDGEMENT	CLASS
PACKING &	1. OUTSIDE AND INSIDE PACKAGE	"MODEL NO." , "LOT NO." AND "QUANTITY" SHOULD INDICATE ON THE PACKAGE.	Minor
INDICATE	2. MODEL MIXED AND QUANTITY	OTHER MODEL MIXEDREJECTED	Critical
	3. PRODUCT INDICATION	"MODEL NO." SHOULD INDICATE ON THE PRODUCT	Major
ASSEMBLY	4. DIMENSION, LCD GLASS SCRATCH AND SCRIBE DEFECT.	ACCORDING TO SPECIFICATION OR DRAWING.	Major
	5. VIEWING AREA	POLARIZER EDGE OR LCD'S SEALING LINE IS VISABLE IN THE VIEWING AREA REJECTED	Minor
	6. BLEMISH - BLACK SPOT - WHITE SPOT IN THE LCD AND LCD GLASS CRACKS	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
APPEARANCE	7. BLEMISH • BLACK SPOT WHITE SPOT AND SCRATCH ON THE POLARIZER	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
	8. BUBBLE IN POLARIZER	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
	9. LCD'S RAINBOW COLOR	STRONG DEVIATION COLOR (OR NEWTON RING) OF LCDREJECTED. OR ACCORDING TO LIMITED SAMPLE (IF NEEDED, AND INSIDE VIEWING AREA)	Minor
	10. ELECTRICAL AND OPTICAL CHARACTERISTICS (CONTRAST: VOP : CHROMATICITY ETC)	ACCORDING TO SPECIFICATION OR DRAWING . (INSIDE VIEWING AREA)	Critical
ELECTRICAL	11.MISSING LINE	MISSING DOT · LINE · CHARACTER REJECTED	Critical
	12.SHORT CIRCUIT WRONG PATTERN DISPLAY	NO DISPLAY VRONG PATTERN DISPLAY CURRENT CONSUMPTION OUT OF SPECIFICATION REJECTED	Critical
	13. DOT DEFECT (FOR COLOR AND TFT)	ACCORDING TO STANDARD OF VISUAL	Minor

Page 20 of 24

11.4. Inspection Plans:

NO.	CLASS	ITEM	JUDGEMENT			
11.4.1	MINOR	BLACK AND WHITE SPOT FOREIGN MATERIEL DUST IN THE CELL BLEMISH SCRATCH	(A) ROUND TYPE:DIAMETER (mm.) $\varnothing \leq 0.2$ $0.2 < \varnothing \leq 0.3$ $0.3 < \varnothing$ NOTE: $\varnothing = (LENGTH^*WINTH)$ (S) ROUND TYPE:LENGTHWIDTH $0.05 < W \leq 0.05$ L ≤ 5.0 $0.05 < W \leq 0.01$ $0.1 < W$ NOTE: $\varnothing = (LENGTH^*WIDTH)$		unit: mm ACCEPTABLE QTY Disregard 3 (Distanced ≥ 15mm) FOLLOW ROUND	
11.4.2	MINOR	BUBBLE IN POLARIZER DENT ON POLARIZER		METER < 0.2 ≤ 0.3	unit: mm. ACCEPTABLE Q'TY Disregard 2 (Distance ≥ 15mm) 0	
11.4.3	MINOR	Dot Defect	 whole dot is regarded a Definition:<1/2 dot and Bright dot: Dots appear which LCD panel is disp 3. Dark dot: Dots appear 		e size of a defective dot over 1 of s one defective dot.	
11.4.3.1	MINOR	Mura	Not visible throu sample if neces	-	lter in 50% gray or judge by limit	

2024-09-23

NO.	CLASS	ITEM	JUDGEMEN	T
11.4.4	MINOR	LCD GLASS CHIPPING	S S	Y > S Reject
11.4.5	MINOR	LCD GLASS CHIPPING	S X S	X or Y > S Reject
11.4.6	MAJOR	LCD GLASS GLASS CRACK	T T T	Y > (1/2) T Reject
11.4.7	MAJOR	LCD GLASS SCRIBE DEFECT	$\Lambda_{\tau \vdash a \dashv}^{\pm} B$	 a> L/3, A>1.5mm. Reject B: ACCORDING TO DIMENSION
11.4.8	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL AREA)	T	$\Phi = (x+y)/2 > 2.5 \text{ mm}$ Reject
11.4.9	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL SURFACE)	TZX	Y > (1/3) T Reject
11.4.10	MINOR	LCD GLASS CHIPPING	X-Y Z	Y > T Reject

11.5 Inspection Plans:

NO.	CLASS		ITEMS		JUDGEM	ENT			
11. <mark>5</mark> .1	MAJOR	Τc	ouch Panel Crack				ct		
			Corner		Not CNC Products CNC Products	X≤2mm, Y≤2mm, Z<1/2T For CNC Outline Dimension	Accept Accept		
11.5.2	MINOR	Touch Panel Chipping	Edge		Not CNC Products CNC Products	X≤3mm, Y≤3mm, Z<1/2T For CNC Outline Dimension	Accept Accept		
11.5.3	MINOR		Scratch I Foreign materiel inear Type)	W≤0.05, L≤10mm 0.05mm <w≤0.07mm :="" l≤5.0mm<br="">Distance between seratch > 5.0mm</w≤0.07mm>		.0mm Acce			
			$\Phi \leq 0.15$ mm		Ф≦0.15mm		et ept		
11.5.4	MINOR		l Foreign materiel Φ=(Length+Width)/2)	0.15mm < Distance betwe Φ >	Omm 5 ea 1 Reje	Max.			
11.5.5	MINOR	Den	ouch Panel t / Fish Eyes ngth+Width)/2)	0.35mm < 0 Distance	>5.0mm		ept Max.		
		Te	ouch Panel	Φ≤0.	.0mm 15mm	Reje	ept		
11.5.6	MINOR		ir Bubble ngth+Width)/2)	Distance between	0.15 mm $< \Phi \le 0.25$ mm Distance between bubbles > 5.0 mm				Max.
				W≤0.03, L≤10mm		Acce	20/20		
11.5.7	MINOR		ouch Panel ng area Scratch	0.03mm <w≦< td=""><td>(0.05mm, L≦5</td><td>5mm Acce 3 ca</td><td>ept Max.</td></w≦<>	(0.05mm, L≦5	5mm Acce 3 ca	ept Max.		
				W > 0.05mm or L > 5mm (W>0.05 Follow 8.5.4 Round type)		-	ect		
11 <mark>.5.</mark> 8	MINOR		ouch Panel laze Mark / Dust	Can not be	e removed	Reje	ct		

YU DU AMSON ELECTRONICS CO., LTD.

12. Handling Precautions

12.1 Mounting method

The LCD panel of AMSON TFT module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

12.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

[Recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (Cl), Sulfur (S)

If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

12.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to power or ground, do not input any signals before power is turned on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

12.4 packing

- Module employs LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

12.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- Slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the maximum operating temperature, 50%Rh or less is required.

12.6 storing

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else. [It is recommended to store them as they have been contained in the inner container at the time of delivery from us.

12.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

13. Precaution for Use

13.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification.
- When a new problem is arisen this is not specified in this specification.
- When an inspection specifications change or operating condition change in customer is reported to AMSON TFT and some problem is arisen in this specification due to the change.
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

14. Packing Method TBD