Version: A

2024-09-24

Specification for Approval

Customer:	
Model Name:	

Si	upplier Approv	Customer approval	
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Version: A

2024-09-24

RECORD OF REVISION

24-09-24	NEW ISSUE	
		

Version: A

2024-09-24

Contents

No.	Items	Page
	REVISION HISTORY	2
	CONTENTS	3
1.0	General Description	4
2.0	Absolute Maximum ratings	5
3.0	Electrical specifications.	6
4.0	Optical specifications.	8
5.0	Interface Connection	13
6.0	Signal Timing Specification	15
7.0	Power Sequence	17
8.0	Reliability Test	18
9.0	Handling & Cautions.	19
10.0	Mechanical Outline Dimension	20
11.0	EDID Table	21

Version: A

2024-09-24

1.0 General Description

1.1 Application

● 绘图板

1.2 General Specification

1.2.1.General FOB Specification(Table 1.)

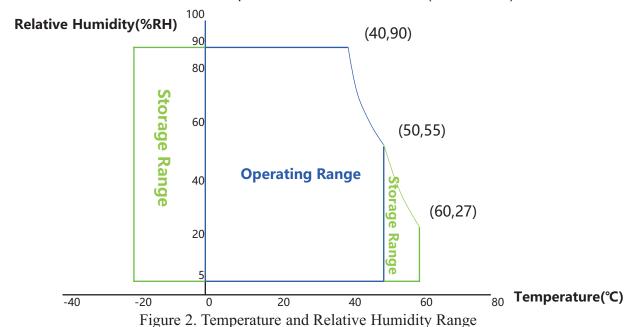
<Table 1. General Specifications>

Parameter	Specification	Unit	Remarks
Active area	293.76 (H) x 165.24 (V)	mm	
Number of pixels	1920 (H) x 1080 (V)	pixels	
Pixel pitch	0.153 (H) x 0.153 (V)	mm	
Pixel arrangement	RGB Vertical stripe		
Display colors	16.7M	colors	
Display mode	Normally Black		
Dimensional outline	305.2(H)*187.9(V) *2.6(D)	mm	
Weight	-	g	
Back-light	Lower Down side, 1-LED Lighting Bar type		Note 1
	-	W	
Power consumption	-	W	
	-	W	

Version: A

2024-09-24

2.0 ABSOLUTE MAXIMUM RATINGS


The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

< Table 2. Absolute Maximum Ratings>

Ta=25+/-2°C

Parameter	Symbol	Min.	Max.	Unit	Remarks
Power Supply Voltage	LCD_VCC	-0.3	5	V	Note 1
BLU Power Supply Voltage	BL_PWR	-0.3	27	V	Note i
Operating Temperature	T _{OP}	0	+50	°C	Note 2
Storage Temperature	T _{ST}	-20	+60	°C	Note 2

- Notes: 1. Permanent damage to the device may occur if maximum values are exceeded functional operation should be restricted to the condition described under normal operating conditions.
 - Temperature and relative humidity range are shown in the figure below.
 RH Max. (40 °C ≥ Ta)
 Maximum wet bulb temperature at 39 °C or less. (Ta > 40 °C) No condensation.

Version: A

2024-09-24

3.0 ELECTRICAL SPECIFICATIONS

3.1 Electrical Specifications

< Table 3. Electrical specifications >

Ta=25+/-2°C

Parameter	Symbol	Values Symbol			Unit	Notes
		Min	Тур	Max		
Power Supply Input Voltage	LCD_VCC	3.0	3.3	3.6	V	Note 1
Power Supply Current	I _{LCD_VCC}	-	-	-	mA	Note 1
In-Rush Current	I_{RUSH}	-	-	-	A	
Permissible Input Ripple Voltage	V_{RF}	-	-	-	mV	

Notes: 1. The supply voltage is measured and specified at the interface connector of FOB. The current draw and power consumption specified is for 3.3V at 25 °C

Version: A

2024-09-24

3.2 Back-light Unit

Ta=25+/-2°C

< Table 3.2 LED Driving guideline specifications >

	Parameter			Тур.	Max.	Unit	Remarks
Power suppl LED Driver	y voltage for	BL_P WR	5	12	21	V	
Power suppli Back light	y Current for	V _{BLU}	-	21	-	V	
Power suppli Back light	y Current for	I _{BLU}	-	160	-	mA	背光灯串:8并7串
Power supplinght	y for Back	P _{BL_PWR}	-	3.95	-	W	LED Power Consumption follow cust omerrequirements
EN Control	Backlight on	V _{ENH}	1.6	1	BL_P WR	V	EN logic high v oltage
Level	Backlight off	V _{ENL}	0	1	0.8	V	EN logic low vol tage
PWM Control	PWM High Level	V _{PML}	1.6	1	BL_P WR	V	
Level	PWM Low Level	V _{PML}	0	-	0.8	V	
PWM Contro	l Frequency	F _{PWM}	0.2	-	20	KHz	
Duty Ratio		-	25	-	100	%	

Notes : 1. Calculator Value for reference $I_{BLU} \times V_{BLU} = P_{BL_PWR}*85\%$

2. The LED Life-time define as the estimated time to 50% degradation of initial luminous under the condition of the ambient temperature of 25°C.

Version: A

2024-09-24

4.0 OPTICAL SPECIFICATION

4.1 Overview

The test of Optical specifications shall be measured in a dark room (ambient luminance ≤ 1 lux and temperature = $25\pm2^{\circ}C$) with the equipment of Luminance meter system (Goniometer system and TOPCON BM-5) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of θ and Φ equal to 0° . We refer to $\theta\emptyset=0$ (= $\theta3$) as the 3 o'clock direction (the "right"), $\theta\emptyset=90$ (= $\theta12$) as the 12 o'clock direction ("upward"), $\theta\emptyset=180$ (= $\theta9$) as the 9 o'clock direction ("left") and $\theta\emptyset=270$ (= $\theta6$) as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement. VDD shall be 3.3+/- 0.3V at 25°C. Optimum viewing angle direction is 6 'clock.

4.2 Optical Specifications

<Table 5. Optical Specifications>

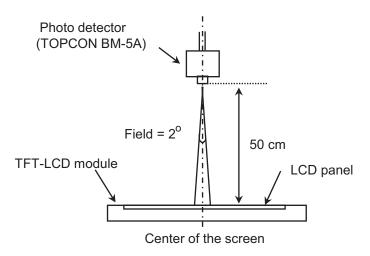
Parame	eter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
	Harizantal	Θ_3		-	85	-	Deg.	
Viewing Angle	Horizontal	Θ_9	CR > 10	-	85	-	Deg.	Note 1
range	Vertical	Θ ₁₂	CK > 10	-	85	-	Deg.	Note i
	Vertical	Θ_6		-	85	-	Deg.	
Luminance Co	ntrast ratio	CR	Θ = 0°	800	1000	-	-	
Luminance of White	5 Points	Y _w	Θ = 0°	250	-	-	cd/m^2	
White	5 Points	ΔΥ5	ILED = 23.5mA	80	-	-	-	_
Luminance uniformity	9 Points	ΔΥ9	20101111	75	-	-	-	Type.
White Chro	White Chromaticity		Θ = 0°	0.283	0.313	0.343	-	
vville Cillo	Папспу	y_w	0 = 0	0.293	0.329	0.359	-	
	Red	X _R			0.653		-	
		y _R			0.341		-	
Reproduction	Green	X _G	Θ = 0°	-0.03	0.322	+0.03	-	
of color		y _G		0.00	0.618	. 0.00	-	
	Blue	X _R			0.149		-	
	Біас	y _B			0.066		-	
Gamı	ut	-	-	68	72	-	%	
Response (Rising + F		T _{RT}	Ta= 25° C Θ = 0°	-	30	35	Ms	Note 6
Cross T	alk	CT	Θ = 0°	-	-	-	%	

Version: A

2024-09-24

Notes:

- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see FIGURE 1).
- 2. Contrast measurements shall be made at viewing angle of Θ = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state . (see FIGURE 1) Luminance Contrast Ratio (CR) is defined mathematically.


- 3. Center Luminance of white is defined as luminance values of 5 point average across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as : ΔY =Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points. (see FIGURE 2 and FIGURE 3).
- 5. The color chromaticity coordinates specified in Table 5 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as FIGURE 4 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Tr, and 90% to 10% is Td.
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See FIGURE 5).

Version: A

2024-09-24

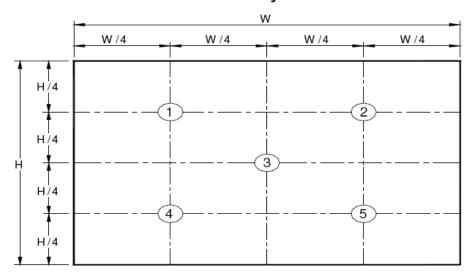

4.3 Optical measurements

Figure 1. Measurement Set Up

Optical characteristics measurement setup

Figure 2. White Luminance and Uniformity Measurement Locations (5 points)

Center Luminance of white is defined as luminance values of center 5 points across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in FIGURE 2 for a total of the measurements per display.

2024 00 24

Version: A

2024-09-24

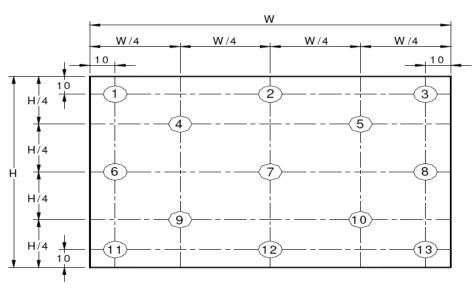
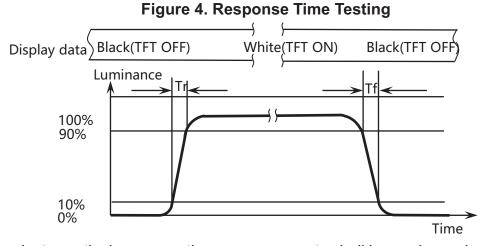



Figure 3. Uniformity Measurement Locations (13 points)

The White luminance uniformity on LCD surface is then expressed as : $\Delta Y5 = Minimum Luminance of five points / Maximum Luminance of five points (see FIGURE 2) , <math>\Delta Y13 = Minimum Luminance of 13 points / Maximum Luminance of 13 points (see FIGURE 3).$

The electro-optical response time measurements shall be made as shown in FIGURE 4 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is Tr and 90% to 10% is Tf.

Version: A

2024-09-24

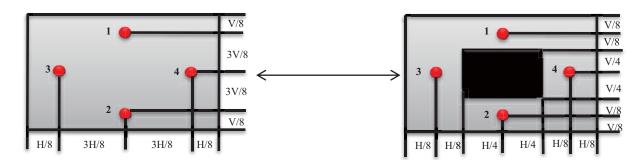


Figure 5. Cross Talk Modulation Test Description

Cross-Talk (%) =
$$\left| \frac{Y_B - Y_A}{Y_A} \right| \times 100$$

Where:

 Y_A = Initial luminance of measured area (cd/m²)

 Y_B = Subsequent luminance of measured area (cd/m²)

The location 1/2/3/4 measured will be exactly the same in both patterns. The test background gray is from L64 to L192. Take the largest data as the result.

Cross Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark.(Refer to Figure 5)

The test system: PR730

Version: A

2024-09-24

5.0 INTERFACE CONNECTION.

5.1 Electrical Interface Connection

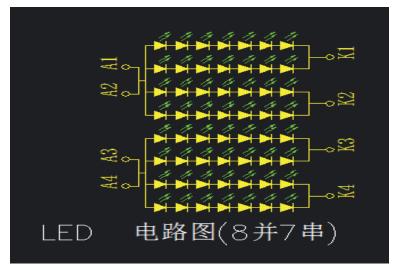
The electronics interface connector is MSAK24025P30.

The connector interface pin assignments are listed in Table 6.

<Table 6. Pin Assignments for the Interface Connector>

Terminal	Symbol	Functions
Pin No.	Symbol	Description
1	NC	Non Connection
2	H-GND	Ground
3	LAN1_N	Complement Signal Link_Lane1
4	LAN1_P	True Signal Link_Lane1
5	H-GND	Ground
6	LAN0_N	Complement Signal Link_Lane0
7	LAN0_P	True Signal Link_Lane0
8	H-GND	Ground
9	AUXP	True Signal Link_Auxiliry Channel
10	AUXN	Complement Signal Link_Auxiliry Channel
11	H-GND	Ground
12	LCD_VCC	Power Supply, 3.3V (typ.)
13	LCD_VCC	Power Supply, 3.3V (typ.)
14	BIST	Panel self test enable
15	H-GND	Ground
16	H-GND	Ground
17	HPD	HPD(Hot Plug Detect) Signal Pin
18	BL_GND	High Speed Ground
19	BL_GND	High Speed Ground
20	BL_GND	High Speed Ground
21	BL_GND	High Speed Ground
22	BL_EN	Backlight on/off Control pin
23	BL_PWM	Back light PWM Dimming
24	NC	Non Connection
25	NC	Non Connection
26	BL_PWR	Backlight power
27	BL_PWR	Backlight power
28	BL_PWR	Backlight power
29	BL_PWR	Backlight power
30	NC	Non Connection

Version: A


2024-09-24

5.2 Back-light & LED Interface Connection

The electronics interface connector is 20599-015E-01

	D: 4 :		= = = =	•
< lable /.	Pin Assignme	ents for the B	LU & FOB	Connector>

Pin No.	Symbol
1	A1
2	A2
3	A3
4	A4
5	NC
6	NC
7	NC
8	K1
9	K1
10	K2
11	K2
12	K3
13	K3
14	K4
15	K4

Version: A

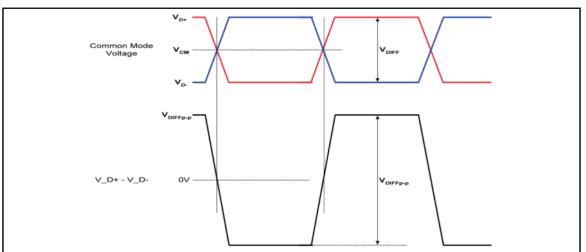
2024-09-24

6.0 SIGNAL TIMING SPECIFICATION

6.1 The NV133FHM-N41 is operated by the DE only.

Item		Symbols	Min	Тур	Max	Unit
PClock	PClock Frequency		-	147.8	-	MHz
	'		1	1120	1	lines
Frame Period		Tv	-	60	-	Hz
			-	16.67	-	ms
Vertical Display Period		Tvd	-	1080	-	lines
One line Scanning Period		Th	-	2200	-	clocks
Horizonta	l Display Period	Thd	-	1920	-	clocks

Version: A


2024-09-24

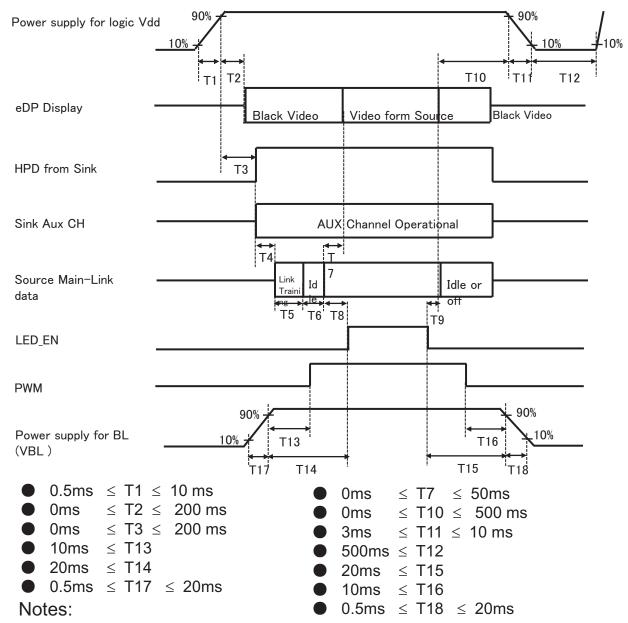
6.2 eDP Rx Interface Timing Parameter

The specification of the eDP Rx interface timing parameter is shown in Table 8.

<Table 9. eDP Rx Interface Timing Specification>

Item	Symbol	Min	Тур	Max	Unit	Remark
Spread spectrum clock	SSC	0	-	0.5	%	
Differential peak-to-peak input volt age at package pins	VRX-DIFFp-p	120	-	1200	mV	
Rx input DC common mode voltage	VRX_DC_CM	0	-	2.0	V	
Differential termination resistance	RRX-DIFF	1	100	-	Ω	
Single-ended termination resistance	RRX-SE	-	-	-	Ω	
Rx short circuit current limit	IRX_SHORT	0	-	50	mA	

Definition of Differential Voltage and Differential Voltage Peak-to Peak



Version: A

2024-09-24

7.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off seq uence shall be as shown in below

- 1. When the power supply VDD is 0V, keep the level of input signals on the low or k eep high impedance.
- 2. Do not keep the interface signal high impedance when power is on. Back Light must be turn on after power for logic and interface signal are valid.

Version: A

2024-09-24

8.0 RELIABILITY TEST

The Reliability test items and its conditions are shown in below.

<Table 10. Reliability test>

	1451	10. Reliability test?	
No	Test Items	Conditions	Remark
1	High temperature storage test	$Ta = 60^{\circ}C$, $60\%RH$, $96 hrs$	
2	Low temperature storage test	Ta = -20°C, 96 hrs	
3	High temperature & high	Ta = 50°C, 80%RH, 96 hrs	
3	humidity operation test	1a – 50 C, 80%KH, 90 IIIS	
4	High temperature operation test	$Ta = 50^{\circ}C$, 60%RH, 96 hrs	
5	Low temperature operation test	Ta = 0°C, 240 hrs	
6	Thermal shock	Ta = -20 °C \leftrightarrow 60 °C (0.5 hr), 60% \pm 3%RH,	
0	Thermal shock	10 cycle	
7	Vibration test(non anarating)	Ta = 25° C, 60% RH, 1.5 G, $10\sim500$ Hz,	
	Vibration test(non-operating)	Sine X,Y,Z / Sweep rate : 1 hour	Note 1
8	Shools tast(non anaroting)	Ta = 25°C, 60%RH, 220G, Half Sine Wave	Note 1
0	Shock test(non-operating)	2 msec $\pm X$, $\pm Y$, $\pm Z$ Once for each direction	
	Electro statio discherge test	ic discharge test Air : 150 pF , 330Ω , $\pm 8 \text{ KV}$ Contact : 150 pF , 330Ω , $\pm 4 \text{ KV}$	
9	_		
	(operating)	$Ta = 25^{\circ}C$, $60^{\circ}RH$,	

Note1:Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.

Note3: Before cosmetic and function test, the product must have enough recovery timeat least 2 hours at room temperature.

Note 4: in the standard condition, there shall be no practical problem that may aftect the display function. After the reliability test, the product only guarantees operation, but don'guarantee all of the cosmetic specification.

Version: A

2024-09-24

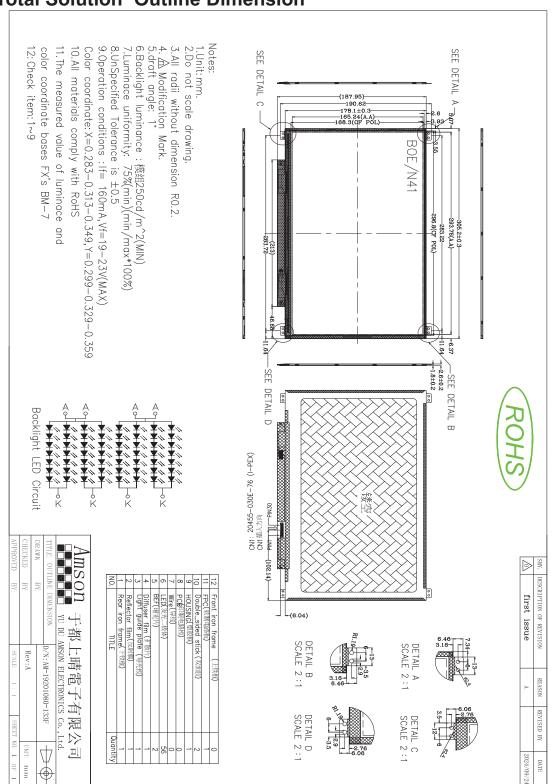
9.0 HANDLING & CAUTIONS

- (1) Cautions when taking out the module
 - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
 - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
 - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
 - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
 - Do not pull the interface connector in or out while the LCD module is operating.
 - Put the module display side down on a flat horizontal plane.
 - · Handle connectors and cables with care.
- (3) Cautions for the operation
 - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
 - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.

(4) Cautions for the atmosphere

- Dew drop atmosphere should be avoided.
- Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
 - Do not apply fixed pattern data signal to the LCD module at product aging.
 - Applying fixed pattern for a long time may cause image sticking.

(6) Other cautions


- Do not disassemble and/or re-assemble LCD module.
- Do not re-adjust variable resistor or switch etc.
- When returning the module for repair or etc., Please pack the module not to be broken. We recommend to use the original shipping packages.

Version: A

2024-09-24

10. Total Solution Outline Dimension

Version: A

2024-09-24

11 EDID Table

Address (HEX)	Function	Hex	Dec	crc	Input values.	Notes
00		00	0		0	
01	Г	FF	255		255	
02	Γ	FF	255		255	
03		FF	255		255	EDIO 111
04	Header	FF	255		255	EDID Header
05	Γ	FF	255		255	
06	Γ	FF	255		255	
07	Γ	00	0		0	
08	ID Manufacturer	09	9		505	10 005
09	Name	E5	229		BOE	ID = BOE
0A	ID Date door to 0 - de	1F	31		0100	10 0100
0B	ID Product Code	08	8		3108	ID = 3108
0C		00	0		0	
0D	00 64	00	0		0	
0E	32-bit serial No.	00	0		0	
0F		00	0		0	
10	Week of manufacture	21	33		25	
11	Year of Manufacture	1C	28		2022	Manufactured in 2022
12	EDID Structure Ver.	01	1		1	EDID Ver 1.0
13	EDID revision #	04	4		4	EDID Rev. 0.4
14	Video input definition	95	149		-	Refer to right table
15	Max H image size	1D	29		29	29.376 cm (Approx)
16	Max V image size	11	17		17	16.524 cm (Approx)
17	Display Gamma	78	120		2.2	Gamma curve = 2.2
18	Feature support	03	3		-	Refer to right table
19	Red/Green low bits	E7	231		-	Red / Green Low Bits
1A	Blue/White low bits	В0	176		-	Blue / White Low Bits
1B	Red x high bits	95	149	604	0.651	Red (x) = 10010101 (0.651)
1C	Red y high bits	5C	92	358	0.345	Red $(y) = 01011100 (0.345)$
1D	Green x high bits	59	89	338	0.331	Green $(x) = 01011001 (0.331)$
1E	Green y high bits	94	148	568	0.612	Green $(y) = 10010100 (0.612)$
1F	Blue x high bits	29	41	157	0.151	Blue $(x) = 00101001 (0.151)$
20	BLue y high bits	22	34	122	0.057	Blue $(y) = 00100010 (0.057)$
21	White x high bits	50	80	321	0.303	White $(x) = 01010000 (0.303)$
22	White y high bits	54	84	337	0.325	White $(y) = 01010100 (0.325)$
23	Established timing 1	00	0		-	
24	Established timing 2	00	0		-	Refer to right table
25	Established timing 3	00	0		-	

Version: A

2024-09-24

26	Standard timing #1	01	1		Not Used
27	Standard tilling #1	01	1		Not used
28	Standard timing #2	01	1		Not Used
29	Standard tilling #2	01	1		Not used
2A	Standard timing #3	01	1		Not Used
2B	Standard tilling #5	01	1		Not used
2C	Standard timing #4	01	1		Not Used
2D	Standard tilling #4	01	1		Not osed
2E	Standard timing #5	01	1		Not Used
2F	Standard tilling #3	01	1		Not osed
30	Standard timing #6	01	1		Not Used
31	Standard tilling #0	01	1		Not osed
32	Standard timing #7	01	1		Not Used
33	Otandara tilling ii i	01	1		Not osed
34	Standard timing #8	01	1		Not Used
35	Standard tilling #6	01	1		Not osed
36		C1	193	147.8	147.8MHz Main clock
37		37	55		
38		80	128	1920	Hor Active = 1920
39		CC	204	280	Hor Blanking = 280
3A		71	113	-	4 bits of Hor. Active + 4 bits of Hor. Blanking
3B		38	56	1080	Ver Active = 1080
3C		28	40	40	Ver Blanking = 40
3D	Detailed	40	64	-	4 bits of Ver. Active + 4 bits of Ver. Blanking
3E	timing/monitor	30	48	48	Hor Sync Offset = 48
3F	descriptor #1	20	32	32	H Sync Pulse Width = 32
40	descriptor #1	36	54	3	V sync Offset = 3 line
41		00	0	6	V Sync Pulse width: 6 line
42]	26	38	294	Horizontal Image Size = 294 mm (Low 8 bits)
43		A5	165	165	Vertical Image Size = 165 mm (Low 8 bits)
44		10	16	-	4 bits of Hor Image Size + 4 bits of Ver Image Size
45		00	0	0	Hor Border (pixels)
46		00	0	0	Vertical Border (Lines)
47		1A	26	-	Refer to right table

Version: A

2024-09-24

				1	
1	2B	43	147.8	147.8MHz Main clock	
	39	57	1000		
	80	128	1920	Hor Active = 1920	
l	18	24	280	Hor Blanking = 280	
l	71	113	_	4 bits of Hor. Active + 4 bits of Hor. Blanking	
	38	56	1080	Ver Active = 1080	
	28	40	40	Ver Blanking = 40	
l	40	64	-	4 bits of Ver. Active + 4 bits of Ver. Blanking	
Detailed timing/monitor	30	48	48	Hor Sync Offset = 48	
descriptor #2	20	32	32	H Sync Pulse Width = 32	
l l	36	54	3	V sync Offset = 3 line	
l l	00	0	6	V Sync Pulse width: 6 line	
l l	26	38	294	Horizontal Image Size = 294 mm (Low 8 bits)	
l [A5	165	165	Vertical Image Size = 165 mm (Low 8 bits)	
l [10	16	-	4 bits of Hor Image Size + 4 bits of Ver Image Size	
l [00	0	0	Hor Border (pixels)	
l [00	0	0	Vertical Border (Lines)	
	1A	26	-	Refer to right above table	
	00	0			
l [00	0			
l [00	0			
l [00	0			
l [00	0			
l [00	0]	
ΙΓ	00	0		1	
l [00	0		Nvidia nvDPS	
Detailed timing/monitor	00	0		(Refer the tab of nvDPS)	
descriptor #3	00	0		Lowest refresh rate that does not cause any visual/optical	
l T	00	0		side effect	
l t	00	0		Side effect	
i t	00	0		1	
	00	0		1	
	00	0		1	
	00	0		1	
	00	0		1	
ŀ	00	0		1	

Version: A

2024-09-24

	00	0			Detailed Timing Description #4
	00	0			Flag
	00	0			Reserved
	02	2			For Brightness Table and Power consumption
	00	0			Flag
	0D	13		-	PWM % [7:0] @ Step 0
l	49	73		-	PWM % [7:0] @ Step 5
l	FF	255		-	PWM % [7:0] @ step 10
Detailed	0A	10		-	Nits [7:0] @ Step 0
timing/monitor	3C	60		-	Nits [7:0] @ Step 5
descriptor #4	6E	110		-	Nits [7:0] @ Step 10
descriptor #4	16 22	22		_	Panel Electronics Power @32x32 Chess
		22		_	Pattern = 800mW
	12	18	_	_	Backlight Power @60 nits =
	12				837.433155080214mW
	20	32		-	Backlight Power @Step 10 = 2900mW
	6E	110		-	Nits @ 100% PWM Duty = 220nit
	00	0			Format:
	00	0			terminate with ASCII code 0Ah
	00	0		·	and pad field with ASCII code 20h
Extension flag	00	0		1	0 :1個EDID;N-1:N个EDID
Checksum	E4	228	228	-	